6 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Frontal evoked γ activity modulates behavioural performance in Autism Spectrum Disorders in a perceptual simultaneity task

    No full text
    Autism spectrum disorders (ASDs) are associated with anomalies in time perception. In a perceptual simultaneity task, individuals with ASD demonstrate superior performance compared to typically developing (TD) controls. γ-activity, a robust marker of visual processing, is reportedly altered in ASD in response to a wide variety of tasks and these differences may be related to superior performance in perceptual simultaneity. Using time-frequency analysis, we assessed evoked γ-band phase-locking in magnetoencephalographic recordings of 16 ASD individuals and 17 age-matched TD controls. Individuals judged whether presented visual stimuli were simultaneous or asynchronous. We identified left frontal γ-activity in ASD, which was associated with a reduced perception of simultaneity. Where feature binding was observed at a neurophysiological level in parieto-occipital cortices in ASD in apparent simultaneity (asynchronous stimuli with short delay between them), this did not predict the correct behavioural outcome. These findings suggest distinct γ profiles in ASD associated with the perception of simultaneity

    Frontal evoked γ activity modulates behavioural performance in Autism Spectrum Disorders in a perceptual simultaneity task

    No full text
    Autism spectrum disorders (ASDs) are associated with anomalies in time perception. In a perceptual simultaneity task, individuals with ASD demonstrate superior performance compared to typically developing (TD) controls. γ-activity, a robust marker of visual processing, is reportedly altered in ASD in response to a wide variety of tasks and these differences may be related to superior performance in perceptual simultaneity. Using time-frequency analysis, we assessed evoked γ-band phase-locking in magnetoencephalographic recordings of 16 ASD individuals and 17 age-matched TD controls. Individuals judged whether presented visual stimuli were simultaneous or asynchronous. We identified left frontal γ-activity in ASD, which was associated with a reduced perception of simultaneity. Where feature binding was observed at a neurophysiological level in parieto-occipital cortices in ASD in apparent simultaneity (asynchronous stimuli with short delay between them), this did not predict the correct behavioural outcome. These findings suggest distinct γ profiles in ASD associated with the perception of simultaneity

    Magen

    No full text
    corecore